ITER edge plasmas modeling:*

- (a) single-null fluid Be, Sn(W);
- (b) neutral CX-wall flux;
- (c) 2nd X-pt hydrogen SOL

T.D. Rognlien, R.H. Bulmer, and M.E. Rensink

Lawrence Livermore National Laboratory

Presented at the
PFC Meeting
UCSD
Feb. 28 - March 2, 2006

^{*} Work performed under the auspices of U.S. DOE by the Univ. of Calif. Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Previous ITER divertor-plasma modeling assumed diffusive radial transport only; we add convection

- ITER assumes 100 MW power input to SOL
- Here carbon modeled as a 3% concentration
- Anomalous radial diffusion set at D = 0.3 m²/s, $\chi_{e,i}$ = 1 m²/s
- We add a radial convection term on outboard side, as experiments and simulations imply

Plasma fluxes to the wall increase more than local density owing to ionization of recycled gas

- Since n_i and V_{conv} increase, the nV flux is much larger
- lonized neutrals contribute the flux
- Ion temperature decreases some owing to cold ionization source; ion energy flux slower
- Hot cx-neutrals, sheath drop to be added to energy flux

ITER utilizes a single-null divertor with steeply-inclined divertor plates

Be physical sputtering yields acceptable core concentration for $Vy_{conv-max} = 70$ m/s at wall

- Roughly consistent with WBC, but shows separatrix structure (should understand this better)
- About 1% Be concentration at core edge; tolerable, but non-trivial with long timescale for steady-state
- Convection level is uncertain, so Be estimates are also

Charge-exchange hydrogen can present a substantial sputtering source at the wall

Plasma for r < 3.7 cm from UEDGE case ffC.6 with convective transport; plasma for r > 3.7 cm for 3 models

DEGAS 2 is used to calculate the energy spectrum of hydrogen neutrals incident on the wall

We have doubled the size of the SOL, which brings in the upper X-point & 2 separatrices

We can now consistently treat the SOL plasma striking the W baffle

Midplane n_i and n_g are most strongly affected by the expanded SOL; less main wall recycling

- Substantial effort to improve UEDGE to work for these cases
- Convergence to steady-state now appears routine

Hydrogen particle flux is much larger to the divertor than the walls, but ...

- Inclusion of extended SOL allows us to evaluate wall flux details
- Quantifies "window frame" idea (Lipschultz, Whyte et al.) for ITER

Extended SOL simulations show large fluxes to upper X-point and W baffle regions

- Comparing psi_max = 1.035 (SN) to psi_max = 1.07 (UBDN) shows ~1/2
 of wall flux concentrates at the upper X-point and W baffle regions
- Such localized fluxes ~10+ times the "average" wall flux

Temperature profiles shows that upper localized X-point region is hotter than W-baffle region

Sputtered W (Sn) from the baffle-only provides some backup for WBC result

- Very preliminary!
- W sputtering yield is uncertain at lower energies

Sn is used as a heavy-ion surrogate for W and results in low Sn (W) core concentration

- Yield curve is physical sputtering of W in the baffle region only (estimated)
- Ionization and recombination are taken for Sn (simply available, will be redone with W)
- Location of sputtering is important midplane worse for impurity intrusion

Summary and plans

- Be levels at core boundary ~1%; timescale for S.S. is ~1 sec
- CX-sputtering energy spectrum from DEGAS 2 indicates that a high energy tail may be worrisome for W
- Extending simulations to far SOL beyond 2nd separatrix quantifies localized fluxes to upper X-point and W-baffle regions
- Surrogate Sn (W) sputtering from baffle may not be a problem as per WBC, but uncertainties are large:
 - upper X-point region not included
 - W sputtering yield at moderate energies
- Ongoing iteration with WBC

Carbon radiation is localized near the divertor plates; neon would be more diffuse

